Energy Storage Configuration of Distribution Networks Considering Uncertainties of Generalized Demand-Side Resources and Renewable Energies

Author:

Sun WeiqingORCID,Gong Yao,Luo Jing

Abstract

With the growing proportion of advanced metering infrastructures and intelligent controllable equipment in power grids, demand response has been regarded as an effective and easily implemented approach to meet the demand–supply equilibrium. This paper innovatively proposes generalized demand-side resources combining the demand response with an energy storage system and constructs a configuration model to obtain scheduling plans. Firstly, this paper analyzes the characteristics of generalized demand-side resources and models the translational loads, reducible loads and energy storage system. Secondly, a deterministic energy storage configuration model aiming at achieving the lowest operation cost of distribution networks is established, from which the scheduling scheme of generalized demand-side resources can be obtained. Then, the fuzzy membership function and the probability density function are used to represent the uncertainty of the demand response, the prediction error of renewable energy output and the generalized demand-side resources that do not participate in the demand response. Therefore, this paper simulates daily operations to modify the capacity of energy storage. The problem is solved by using Monte Carlo simulation, fuzzy chance-constrained programming and mixed-integer programming. Finally, the effectiveness of this model is demonstrated with case studies in a 33-node distribution network. The results show that the uncertainty of this system is solved effectively. When only considering generalized demand-side resources, the total cost is reduced by 9.5%. After considering the uncertainty, the total cost is also decreased 0.3%. Simultaneously, the validity of the model is verified.

Funder

Nation Natural Science foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3