In Silico Dissection of Regulatory Regions of PHT Genes from Saccharum spp. Hybrid and Sorghum bicolor and Expression Analysis of PHT Promoters under Osmotic Stress Conditions in Tobacco

Author:

Murugan Naveenarani1,Kumar Ravinder2,Pandey Shashi3,Dhansu Pooja4,Chennappa Mahadevaiah1,Nallusamy Saranya5ORCID,Govindakurup Hemaprabha1,Chinnaswamy Appunu1

Affiliation:

1. Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Affiliated to Bharathidasan University, Coimbatore, Tamil Nadu 641007, India

2. Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Regional Centre Karnal, Karnal 132001, India

3. Division of Crop Protection, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Regional Centre Karnal, Karnal 132001, India

4. Division of Crop Production, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Regional Centre Karnal, Karnal 132001, India

5. Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore 641007, India

Abstract

Phosphorus (P) is the second-most essential macronutrient required for the growth and development of plants. It is involved in a number of cellular processes that contribute to the plant’s growth and development. This study investigated Saccharum spp. hybrid and Sorghum bicolor promoter regions of Phosphate transporters (PHT), viz., PHT1, PHT2, PHT3, PHT4, and PHO1, through in silico analysis. The transcription start sites (TSS), conserved motifs, and CpG islands were studied using various computational techniques. The distribution of TSSs indicated the highest promoter prediction scores (1.0). MSh2 and MSb4 were recognized as the common promoter motifs for PHT promoters, found in with 85 to 100% percentage of distribution. The CpG analysis revealed that the promoter regions of most PHT genes had low CpG density, indicating a possible tissue-specific expression. The PHT promoters were investigated for the presence of biotic- and abiotic-stress-associated transcription factor binding sites (TFbs) that revealed the presence of binding motifs for major transcription factors (TFs), namely, AP2/ERF, bHLH, bZIP, MYB, NAC, and WRKY. Therefore, the in-silico analysis of the promoter regions helps us to understand the regulation mechanism of phosphate transporter promoters and gene expression under stress management. The 5′ regulatory region of the EaPHT gene was isolated from Erianthus, a wild relative of the genus Saccharum. The promoter construct was prepared and transformed in tobacco wherein the promoter drove the expression of GUS. Analysis of GUS expression in transgenic tobacco revealed enhanced expression of GUS under salt-stress conditions. This is the first report of the isolation and characterization of a phosphate transporter gene promoter from Erianthus and is expected to be useful for the development of salt-stress transgenic crop plants.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3