Future Reductions in Suitable Habitat for Key Tree Species Result in Declining Boreal Forest Aboveground Biomass Carbon in China

Author:

Zhu Bin1ORCID,Zhang Zengxin12ORCID,Kong Rui3,Wang Meiquan1,Li Guangshuai1,Sui Xiran1,Tao Hui2ORCID

Affiliation:

1. Joint Innovation Center for Modern Forestry Studies, College of Forestry, Nanjing Forestry University, Nanjing 210037, China

2. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

3. State Key Laboratory of Hydrology-Water Resources and Hydraulics Engineering, Hohai University, Nanjing 210098, China

Abstract

China’s forest ecosystem plays a crucial role in carbon sequestration, serving as a cornerstone in China’s journey toward achieving carbon neutrality by 2060. Yet, previous research primarily emphasized climate change’s influence on forest carbon sequestration, neglecting tree species’ suitable area changes. This study combinates the Lund–Potsdam–Jena model (LPJ) and the maximum entropy model (MaxENT) to reveal the coupling impacts of climate and tree species’ suitable area changes on forest aboveground biomass carbon (ABC) in China. Key findings include the following: (1) China’s forests are distributed unevenly, with the northeastern (temperate coniferous broad-leaved mixed forest, TCBMF), southwestern, and southeastern regions (subtropical evergreen broad-leaved forest, SEBF) as primary hubs. Notably, forest ABC rates in TCBMF exhibited a worrisome decline, whereas those in SEBF showed an increasing trend from 1993 to 2012 based on satellite observation and LPJ simulation. (2) Under different future scenarios, the forest ABC in TCBMF is projected to decline steadily from 2015 to 2060, with the SSP5-8.5 scenario recording the greatest decline (−4.6 Mg/ha/10a). Conversely, the forest ABC in SEBF is expected to increase under all scenarios (2015–2060), peaking at 1.3 Mg/ha/10a in SSP5-8.5. (3) Changes in forest ABC are highly attributed to climate and changes in tree species’ highly suitable area. By 2060, the suitable area for Larix gmelinii in TCBMF will significantly reduce to a peak of 65.71 × 104 km2 under SSP5-8.5, while Schima superba Gardner & Champ and Camphora officinarum in SEBF will expand to peaks of 94.07 × 104 km2 and 104.22 × 104 km2, respectively. The geographic detector’s results indicated that the climate and tree species’ suitable area changes showed bi-variate and nonlinear enhanced effects on forest ABC change. These findings would offer effective strategies for achieving carbon neutrality.

Funder

Key Research and Development Program of Xinjiang Uygur Autonomous Region, China

National Natural Science Foundation of China

West Light Foundation of the Chinese Academy of Sciences

Flexible Talent Introduction Project of Xinjiang Uygur Autonomous Region

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3