Mechanical Properties of Vacancy Tuned Carbon Honeycomb

Author:

Xie Lu,An Haojie,He Chenwei,Qin Qin,Peng QingORCID

Abstract

Carbon honeycomb (CHC) has great application potential in many aspects for the outstanding mechanical properties. However, the effect of both defects and temperature on the mechanical properties are far from reasonable understanding, which might be a huge obstacle for its promising applications as engineering materials. In this work, we investigate the effect of vacancy-type defect, which is inevitably exists in material, on the mechanical properties of CHC via reactive molecular dynamics simulations. The mechanical strength is anisotropic and decreases with the increasing temperature. CHC yield in cell axis direction since the break of C–C bonds on the junction. Vacancies weaken CHC by reducing the strength and failure strain. The effect of single vacancy on strength of CHC becomes more obvious with reducing temperature and is sensitive to the location and bonding of the vacancies. The maximum reduction of strength in cell axis direction is with vacancy on the middle of the wall of CHC where sp2 bonds are removed. The strength is reduced by 8.1% at 500 K, 11.5% at 300 K and 12.8% at 100 K. With 0.77% defect concentration, the strength reduces 40.3% in cell axis direction but only 18.7% in zigzag direction and 24.4% in armchair direction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3