Multipole Radiations from Large Gold Nanospheres Excited by Evanescent Wave

Author:

Chen JingdongORCID,Xiang Jin,Jiang Shuai,Dai Qiaofeng,Tie Shaolong,Lan Sheng

Abstract

We proposed the use of the evanescent wave generated in a total internal reflection configuration to excite large gold nanospheres and investigated the radiations of the high-order plasmon modes supported in gold nanospheres. It was revealed that the evanescent wave excitation is equivalent to the excitation by using both the incident and reflected light, offering us the opportunity to control the orientation of the electric field used to excite nanoparticles. In addition, it was found that the scattering light intensity is greatly enhanced and the background noise is considerably suppressed, making it possible to detect the radiations from high-order plasmon modes. Moreover, the influence of the mirror images on the scattering induced by a metal substrate is eliminated as compared with the surface plasmon polariton excitation. By exciting a gold nanosphere with s-polarized light and detecting the scattering light with a p-polarized analyzer, we were able to reveal the radiation from the electric quadrupole mode of the gold nanosphere in both the spatial and the frequency domains. Our findings are important for characterizing the radiations from the high-order modes of large nanoparticles and useful for designing nanoscale photonic devices.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3