Enhanced Silver Nanowire Composite Window Electrode Protected by Large Size Graphene Oxide Sheets for Perovskite Solar Cells

Author:

Chen Hongye,Li Min,Wen Xiaoyan,Yang Yingping,He DapingORCID,Choy Wallace,Lu Haifei

Abstract

Despite the outstanding features of high transmittance and low sheet resistance from silver nanowire (Ag NW) based transparent electrodes, their applications in perovskite solar cells (PVSCs) as window electrodes encounter significant obstacles due to the stability issue brought by the corrosion of halogen species from perovskite layer. In this study, we used large size graphene oxide (LGO) sheets as the protective barrier for bottom Ag NW nano-network. Contributed by the LGO with average size of 60 μm, less GO sheet was necessary for forming the fully covered protective barrier with fewer cracks, which consequently improved the optical transparency and anticorrosive ability of the composite electrode compared to the one from relatively small size GO. Our experiments demonstrated the composite electrode of Ag NW/LGO. The glass substrate exhibited transmittance of 83.8% and 81.8% at 550 nm before and after partial reduction, which maintained 98.4% and 95.1% average transmittance (AVT) of the pristine Ag NW electrode. Meanwhile, we utilized the steady hot airflow to assist the fast solvent evaporation and the uniform GO film formation on Ag NW electrode. Before the application of composite electrode in organic-inorganic hybrid perovskite solar cells, the operational stability of composite electrodes from different sizes of GO with perovskite film fabricated on top were characterized under continuing external bias and light irradiation. Experimental results indicate that the Ag NW electrode protected by LGO could maintain original resistance for more than 45 h. Finally, the PVSC fabricated on Ag NW/LGO based composite electrode yielded a power conversion efficiency (PCE) of 9.62%, i.e., nearly 85% of that of the reference device fabricated on the commercial indium-tin oxide (ITO) glass. Our proposed low temperature and solution processed bottom electrode with improved optical transparency and operational stability can serve as the very beginning layer of optoelectronic devices, to promote the development of low cost and large area fabrication perovskite solar cells.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3