Dual pH- and Thermo-Sensitive Poly(N-isopropylacrylamide-co-allylamine) Nanogels for Curcumin Delivery: Swelling–Deswelling Behavior and Phase Transition Mechanism

Author:

Santhamoorthy Madhappan1,Kim Seong-Cheol1

Affiliation:

1. School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Abstract

Curcumin (Cur) is a beneficial ingredient with numerous bioactivities. However, due to its low solubility and poor bioavailability, its therapeutic application is limited. In this work, we prepared poly-N-isopropylacrylamide p(NIPAm) and polyallylamine p(Am)-based nanogel (p(NIPAm-co-Am)) NG for a dual pH- and temperature-sensitive copolymer system for drug delivery application. In this copolymer system, the p(NIPAm) segment was incorporated to introduce thermoresponsive behavior and the p(Am) segment was incorporated to introduce drug binding sites (amine groups) in the resulting (p(NIPAm-co-Am)) NG system. Various instrumental characterizations including 1H nuclear magnetic resonance (1H NMR) spectroscopy, Fourier transform infrared (FT-IR) analysis, scanning electron microscopy (SEM), zeta potential, and particle size analysis were performed to confirm the copolymer synthesis. Curcumin (Cur), an anticancer bioactive substance, was employed to assess the in vitro drug loading and release performance of the resulting copolymer nanogels system at varied pH levels (pH 7.2, 6.5, and 4.0) and temperatures (25 °C, 37 °C, and 42 °C). The cytocompatibility of the p(NIPAm-co-Am) NG sample was also tested on MDA-MB-231 cells at various sample concentrations. All the study results indicate that the p(NIPAm-co-Am) NG produced might be effective for drug loading and release under pH and temperature dual-stimuli conditions. As a result, the p(NIPAm-co-Am) NG system has the potential to be beneficial in the use of drug delivery applications in cancer therapy.

Funder

National Research Foundation of Korea

Ministry of SMEs and Startups

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3