Optimization of the Methods to Develop Stable Polymer Gels for Water Management in Medium- and Ultra-High-Salinity Reservoirs

Author:

Hu Shuiqing1,Ding Mingchen234,Hu Yafei1,Wang Yefei234,Dong Jiangyang234

Affiliation:

1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

2. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

3. Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry of Education, Qingdao 266580, China

4. Shandong Key Laboratory of Oilfield Chemistry, China University of Petroleum (East China), Qingdao 266580, China

Abstract

Polymer gels suffer from a serious syneresis issue when exposed to high-temperature and high-salinity (HTHS) conditions, which limits their use as water-treatment agents in this type of reservoir. In this paper, the effects of the polymer type/concentration, deoxidizers, and stabilizers on the long-term stability of polymer gels were systematically studied; thus, the methods to develop stable polymer gels for two typical levels of salinity were optimized. The results show the following: (1) For a medium-salinity condition (TDS: 33,645.0 mg/L) at 125 °C, conventional HPAM gels completely dehydrate within only 1 day, and the addition of a deoxidizer hardly improved their stability. Some special polymers, e.g., AP-P5, MKY, and CPAM, are able to form stable gels if a high concentration of 0.8% is used; the syneresis rate of these gels is about 10% after 30 days. However, the addition of the complexant sodium oxalate significantly improves the stability of gels formed by all five of these different polymers, which behave with a 0% syneresis rate after 30 days pass. Complexants are the most economical and feasible agents to develop stable gels in medium-salinity water. (2) Gels enhanced using the methods above all become unstable in a more challenging ultra-high-saline condition (TDS: 225,068.0 mg/L). In this case, special calcium- and magnesium-resistant polymers are required to prepare stable gels, which show 0% syneresis rates after 30 days, have relatively low strengths, but do produce a good plugging effect in high-permeability cores.

Funder

Scientific Research and Technical Development Projects of CNPC

Natural Science Foundation of Shandong Province of China

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3