Abstract
Glutaredoxin (EC 1.15–1.21) is known as an oxidoreductase that protects cysteine residues within proteins against oxidative stress. Glutaredoxin catalyzes an electron transfer reaction that donates an electron to substrate proteins in the reducing system composed of glutaredoxin, glutathione, glutathione reductase, and nicotinamide-adenine dinucleotide phosphate (reduced form). 3-mercaptopyruvate sulfurtransferase (EC 2.8.1.2) is a cysteine enzyme that catalyzes transsulfuration, and glutaredoxin activates 3-mercaptopyruvate sulfurtransferase in the reducing system. Interestingly, even when glutathione or glutathione reductase was absent, 3-mercaptopyruvate sulfurtransferase activity increased, probably because reduced glutaredoxin was partly present and able to activate 3-mercaptopyruvate sulfurtransferase until depletion. A study using mutant Escherichia coli glutaredoxin1 (Cys14 is the binding site of glutathione and was replaced with a Ser residue) confirmed these results. Some inconsistency was noted, and glutaredoxin with higher redox potential than either 3-mercaptopyruvate sulfurtransferase or glutathione reduced 3-mercaptopyruvate sulfurtransferase. However, electron-transfer enzymatically proceeded from glutaredoxin to 3-mercaptopyruvate sulfurtransferase.
Subject
Molecular Biology,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献