MYB Superfamily in Brassica napus: Evidence for Hormone-Mediated Expression Profiles, Large Expansion, and Functions in Root Hair Development

Author:

Li Pengfeng,Wen Jing,Chen Ping,Guo Pengcheng,Ke Yunzhuo,Wang Mangmang,Liu Mingming,Tran Lam-Son PhanORCID,Li Jiana,Du HaiORCID

Abstract

MYB proteins are involved in diverse important biological processes in plants. Herein, we obtained the MYB superfamily from the allotetraploid Brassica napus, which contains 227 MYB-related (BnMYBR/Bn1R-MYB), 429 R2R3-MYB (Bn2R-MYB), 22 R1R2R3-MYB (Bn3R-MYB), and two R1R2R2R1/2-MYB (Bn4R-MYB) genes. Phylogenetic analysis classified the Bn2R-MYBs into 43 subfamilies, and the BnMYBRs into five subfamilies. Sequence characteristics and exon/intron structures within each subfamily of the Bn2R-MYBs and BnMYBRs were highly conserved. The whole superfamily was unevenly distributed on 19 chromosomes and underwent unbalanced expansion in B. napus. Allopolyploidy between B. oleracea and B. rapa mainly contributed to the expansion in their descendent B. napus, in which B. rapa-derived genes were more retained. Comparative phylogenetic analysis of 2R-MYB proteins from nine Brassicaceae and seven non-Brassicaceae species identified five Brassicaceae-specific subfamilies and five subfamilies that are lacking from the examined Brassicaceae species, which provided an example for the adaptive evolution of the 2R-MYB gene family alongside angiosperm diversification. Ectopic expression of four Bn2R-MYBs under the control of the viral CaMV35S and/or native promoters could rescue the lesser root hair phenotype of the Arabidopsis thaliana wer mutant plants, proving the conserved negative roles of the 2R-MYBs of the S15 subfamily in root hair development. RNA-sequencing data revealed that the Bn2R-MYBs and BnMYBRs had diverse transcript profiles in roots in response to the treatments with various hormones. Our findings provide valuable information for further functional characterizations of B. napus MYB genes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3