Abstract
Myticins are cysteine-rich antimicrobial peptides highly expressed in hemocytes of Mytilus galloprovincialis. Along with other antimicrobial peptides (AMPs), myticins are potent effectors in the mussel immune response to pathogenic infections. As intertidal filter-feeders, mussels are constantly exposed to mutable environmental conditions, as well as to the presence of many pathogens, and myticins may be key players in the great ability of these organisms to withstand these conditions. These AMPs are known to be characterized by a remarkable sequence diversity, which was further explored in this work, thanks to the analysis of the recently released genome sequencing data from 16 specimens. Altogether, we collected 120 different sequence variants, evidencing the important impact of presence/absence variation and positive selection in shaping the repertoire of myticin genes of each individual. From a functional point of view, both the isoelectric point (pI) and the predicted charge of the mature peptide show unusually low values compared with other cysteine-rich AMPs, reinforcing previous observations that myticins may have accessory functions not directly linked with microbe killing. Finally, we report the presence of highly conserved regulatory elements in the promoter region of myticin genes, which might explain their strong hemocyte-specific expression.
Funder
H2020 European Research Council
Interreg
Subject
Molecular Biology,Biochemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献