Effect of Multi-Walled Carbon Nanotubes on the Growth and Expression of Stress Resistance Genes in Birch

Author:

Zhuzhukin Konstantin V.ORCID,Evlakov Peter M.,Grodetskaya Tatiana A.ORCID,Gusev Alexander A.ORCID,Zakharova Olga V.,Shuklinov Aleksey V.,Tomina Elena V.

Abstract

Recent studies have shown that nanomaterials, including carbon nanotubes, are associated with a wide range of effects on living organisms, from stimulation to toxic effects. Plants are an important object of such research, which is associated with the potential use of carbon nanomaterials in agriculture and environmental protection. At the same time, the specific mechanisms of formation of plant resistance to the effects of carbon nanotubes remain not fully understood, especially in woody plants. Therefore, we studied the effect of aqueous colloids of multi-walled carbon nanotubes (MWCNTs) with an outer diameter of 10–30 nm and a length of about 2 μm at a concentration of 1, 10, 50, and 100 mg/L on morphometric parameters and the level of expression of stress resistance genes in Betula pubescens Ehrh. and B. pendula Roth. plants in greenhouse conditions. The results showed an increase in the length and diameter of the shoot in the studied plants. The dry biomass of the leaf increased by 30%, the stem by 42%, and the root by 49% when using MWCNTs at a concentration of 10 mg/L. The expression of the stress resistance genes DREB2 and PR-10 significantly increased under the influence of 1 mg/L MWCNTs on plants of both species. At the same time, the use of 100 mg/L nanoparticles led to a decrease in the studied parameters in Betula pendula, which may be associated with the negative effect of MWCNTs in high concentrations. The revealed positive effects of low concentrations of MWCNTs on morphometric parameters and stimulation of stress resistance genes by nanotubes open up prospects for their use in woody plant biotechnology.

Funder

Russian Scientific Foundation

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Forestry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3