Synthesis and Characterization of Humic/Melanin-like Compounds by Oxidative Polymerization of Simple Aromatic Precursors

Author:

Khademimoshgenani Nastaran1,Green Sarah A.1ORCID

Affiliation:

1. Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA

Abstract

Dissolved organic matter (DOM) is a complex mixture of naturally occurring organic molecules originating from multiple marine and terrestrial sources. DOM plays a significant role in water quality by affecting the photochemistry, trace metal transport, and acidity in aquatic systems. Understanding the chemical composition of DOM helps interpret the links between its optical properties and molecular structures. Currently, the molecular origins of the optical properties of DOM are not well-defined. In this study, we oxidize and initiate the polymerization of melanin precursors 1,8-dihydroxy naphthalene and 5,6-dihydroxy indole by the addition of hydrogen peroxide and/or with ultraviolet irradiation. Our goal is to evaluate the possibility of reproducing the optical signatures of DOM from simple aromatic precursors. Optical characterization shows an extreme shift of the absorbance to a featureless trend and broad fluorescence peaks (350–500 nm) like DOM. Electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) mass spectrometry show evidence of oligomers with varying degrees of oxidation. The combination of our results shows that about 1–4 units of melanin oligomers with varying degrees of oxidation mimic the optical properties of DOM. Overall, our results strongly support the idea that simple precursors form oligomeric chromophores mimicking DOMs optical properties through simple oxidative steps.

Funder

department of chemistry and the vice president for research at Michigan Technological University, Houghton, MI, USA

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference74 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3