Path Planning for Laser Cladding Robot on Artificial Joint Surface Based on Topology Reconstruction

Author:

Li YuanjinORCID,Chen TaoORCID,Liu DefuORCID

Abstract

Artificial joint surface coating is a hot issue in the interdisciplinary fields of manufacturing, materials and biomedicine. Due to the complex surface characteristics of artificial joints, there are some problems with efficiency and precision in automatic cladding path planning for coating fabrication. In this study, a path planning method for a laser cladding robot for artificial joints surface was proposed. The key of this method was the topological reconstruction of the artificial joint surface. On the basis of the topological relation, a set of parallel planes were used to intersect the CAD model to generate a set of continuous, directed and equidistant surface transversals on the artificial joint surface. The arch height error method was used to extract robot interpolation points from surface transversal lines according to machining accuracy requirements. The coordinates and normal vectors of interpolation points were used to calculate the position and pose of the robot tool center point (TCP). To ensure that the laser beam was always perpendicular to the artificial joint surface, a novel laser cladding set-up with a robot was designed, of which the joint part clamped by a six-axis robot moved while the laser head was fixed on the workbench. The proposed methodology was validated with the planned path on the surface of an artificial acetabular cup using simulation and experimentation via an industrial NACHI robot. The results indicated that the path planning method based on topological reconstruction was feasible and more efficient than the traditional robot teaching method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In situ repairing of continuous fiber-reinforced thermoplastic composite via multi-axial additive manufacturing;The International Journal of Advanced Manufacturing Technology;2024-03-18

2. Analysis for temperature distribution of laser cleaning process of curved surface by numerical simulation;Journal of Laser Applications;2023-11-01

3. A robot motion position and posture control method for freeform surface laser treatment based on NURBS interpolation;Robotics and Computer-Integrated Manufacturing;2023-10

4. Design of Intelligent Path-finding Algorithm for Sweeping Robot Based on BP Neural Network Model;2023 2nd International Conference on 3D Immersion, Interaction and Multi-sensory Experiences (ICDIIME);2023-06

5. Path planning and pose correction of robot laser cleaning process for specific surfaces of parts;The International Journal of Advanced Manufacturing Technology;2023-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3