Joint Effects of the DEM Resolution and the Computational Cell Size on the Routing Methods in Hydrological Modelling

Author:

Li Jingjing,Chen HuaORCID,Xu Chong-YuORCID,Li LuORCID,Zhao Haoyuan,Huo Ran,Chen Jie

Abstract

Natural disasters, including droughts and floods, have caused huge losses to mankind. Hydrological modelling is an indispensable tool for obtaining a better understanding of hydrological processes. The DEM-based routing methods, which are widely used in the distributed hydrological models, are sensitive to both the DEM resolution and the computational cell size. Too little work has been devoted to the joint effects of DEM resolution and computational cell size on the routing methods. This study aims to study the joint effects of those two factors on discharge simulation performance with two representative routing methods. The selected methods are the improved aggregated network-response function routing method (I-NRF) and the Liner-reservoir-routing method (LRR). Those two routing methods are combined with two runoff generation models to simulate the discharge. The discharge simulation performance is evaluated under the cross combination of four DEM resolutions (i.e., 90 m, 250 m, 500 m, and 1000 m) and fifty-six computational cell sizes (ranging from 5 arc-min to 60 arc-min). Eleven years of hydroclimatic data from the Jianxi basin (2000–2010) and the Shizhenjie basin (1983–1993) in China are used. The results show that the effects of the DEM resolution and the computational cell size are different on the I-NRF method and the LRR method. The computational cell size has nearly no influence on the performance of the I-NRF methods, while the DEM resolution does. On the contrary, the LRR discharge simulation performance decreases with oscillating values as the computational cell size increases, but is hardly affected by the DEM resolution. Furthermore, the joint effects of the DEM resolution and the computational cell size can be ignored for both routing methods. The results of this study will help to establish the appropriate DEM resolution, computational cell size, and routing method when researchers build hydrological models to predict future disasters.

Funder

the National Key Research and Development Program

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3