Boosting Electro- and Photo-Catalytic Activities in Atomically Thin Nanomaterials by Heterointerface Engineering

Author:

Chen Xingyu12,Jiang Xinyue1,Zhang Hao1

Affiliation:

1. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Since the discovery of graphene, two-dimensional ultrathin nanomaterials with an atomic thickness (typically <5 nm) have attracted tremendous interest due to their fascinating chemical and physical properties. These ultrathin nanomaterials, referred to as atomically thin materials (ATMs), possess inherent advantages such as a high specific area, highly exposed surface-active sites, efficient atom utilization, and unique electronic structures. While substantial efforts have been devoted to advancing ATMs through structural chemistry, the potential of heterointerface engineering to enhance their properties has not yet been fully recognized. Indeed, the introduction of bi- or multi-components to construct a heterointerface has emerged as a crucial strategy to overcome the limitations in property enhancement during ATM design. In this review, we aim to summarize the design principles of heterointerfacial ATMs, present general strategies for manipulating their interfacial structure and catalytic properties, and provide an overview of their application in energy conversion and storage, including the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), the oxygen reduction reaction (ORR), the CO2 electroreduction reaction (CO2RR), photocatalysis, and rechargeable batteries. The central theme of this review is to establish correlations among interfacial modulation, structural and electronic properties, and ATMs’ major applications. Finally, based on the current research progress, we propose future directions that remain unexplored in interfacial ATMs for enhancing their properties and introducing novel functionalities in practical applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3