Buckling and Free Vibration Analyses of Various Nanoparticle Reinforced Concrete Beams Resting on Multi-Parameter Elastic Foundations

Author:

Dine Elhennani Soumia1,Harrat Zouaoui R.1ORCID,Chatbi Mohammed1ORCID,Belbachir Asma2,Krour Baghdad1ORCID,Işık Ercan3ORCID,Harirchian Ehsan4ORCID,Bouremana Mohamed1,Bachir Bouiadjra Mohamed15

Affiliation:

1. Laboratoire des Structures et Matériaux Avancés dans le Génie Civil et Travaux Publics, Djillali Liabes University, Sidi Bel-Abbes 22000, Algeria

2. Laboratory of Materials and Processes of Construction, Abdelhamid Ibn-Badis University, Mostaganem 27000, Algeria

3. Department of Civil Engineering, Bitlis Eren University, Bitlis 13100, Turkey

4. Institute of Structural Mechanics (ISM), Bauhaus-Universität Weimar, 99423 Weimar, Germany

5. Thematic Agency for Research in Science and Technology (ATRST), Algiers 16000, Algeria

Abstract

Given their considerable specific surface area and amorphous characteristics, nanoparticles exhibit excellent pozzolanic activity, and when undergoing a reaction with calcium hydroxide, this leads to the generation of a denser matrix by promoting the formation of a greater amount of C-S-H gel, thereby enhancing the strength and durability of the concrete and fortifying the overall structure. Indeed, the present study investigates a comparative study of the buckling and free vibration analyses of concrete beams reinforced with various types of nanoparticles. For its simplicity and accuracy, a higher-order shear deformation theory will be used to analytically model the reinforced concrete beam. Furthermore, the powerful Eshelby’s model is used to derive the equivalent nanocomposite properties. The soil medium is simulated with Pasternak elastic foundation, including a shear layer, and Winkler’s spring, interlinked with a Kerr foundation. The motion equations are derived using Hamilton’s principle. Moreover, based on Navier’s analytical methods, the closed-form solutions of simply supported beams have been obtained. Different parameters, such as type and volume percent of nanoparticles, geometrical parameters, choice of theory and soil medium, on the buckling and dynamic behavior of the beam, are exercised and shown. The major findings of this work indicate that the use of nanoparticles in concretes increases better mechanical resistance and amplifies the natural frequencies. In addition, the elastic foundation has a significant impact on the buckling and vibration performances of concrete beams.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3