Understanding the Microstructure Evolution of 8Cr4Mo4V Steel under High-Dose-Rate Ion Implantation

Author:

Miao Bin12,Zhang Jinming23,Guo Jiaxu2,Ma Xinxin12,Wang Liqin4,Zhang Xinghong5

Affiliation:

1. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China

2. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

3. CETC Academy of Chips Technology, Chongqing 401332, China

4. MIIT Key Laboratory of Aerospace Bearing Technology and Equipment, Harbin Institute of Technology, Harbin 150001, China

5. AECC Harbin Bearing Co., Ltd., Harbin 150001, China

Abstract

In this study, the effect of microstructure under various dose rates of plasma immersion ion implantation on 8Cr4Mo4V steel has been investigated for crystallite size, lattice strain and dislocation density. The phase composition and structure parameters including crystallite size, dislocation density and lattice strain have been investigated by X-ray diffraction (XRD) measurements and determined from Scherrer’s equation and three different Williamson–Hall (W-H) methods. The obtained results reveal that a refined crystallite size, enlarged microstrain and increased dislocation density can be obtained for the 8Cr4Mo4V steel treated by different dose rates of ion implantation. Compared to the crystallite size (15.95 nm), microstrain (5.69 × 10−3) and dislocation density (8.48 × 1015) of the dose rate of 2.60 × 1017 ions/cm2·h, the finest grain size, the largest microstrain and the highest dislocation density of implanted samples can be achieved when the dose rate rises to 5.18 × 1017 ions/cm2·h, the effect of refining is 26.13%, and the increment of microstrain and dislocation density are 26.3% and 45.6%, respectively. Moreover, the Williamson–Hall plots are fitted linearly by taking βcosθ along the y-axis and 4sinθ or 4sinθ/Yhkl or 4sinθ(2/Yhkl)1/2 along the x-axis. In all of the W-H graphs, it can be observed that some of the implanted samples present a negative and a positive slope; a negative and a positive slope in the plot indicate the presence of compressive and tensile strain in the material.

Funder

National Science and Technology Major Project

Basic Research Project

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3