Absorption Band Tunable La-Sr Co-Doped BaCo2-W Type Hexaferrites

Author:

Li Juan12ORCID,Sun Xuetao12

Affiliation:

1. College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China

2. Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China

Abstract

La-Sr co-doped Ba1−x(La0.5Sr0.5)xCo2Fe16O27 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0, respectively) hexaferrites were prepared by the solid-state method. W-type hexaferrite single phase structure with space group P63/mmc was obtained when the doping amount was x < 0.4 and an M-type hexaferrite and a spinel phase with smaller grains gradually replaced the W phase as the primary phases when x ≥ 0.6. The maximum Ms is 76.2 emu/g and the minimum Hc is 60 Oe at x = 0.4, as obtained by VSM analysis. The magnetoelectric properties of the samples were tested at 1–18 GHz with a vector network analyzer and the reflection loss was calculated based on transmission line theory. It was found that the introduction of an appropriate amount of La-Sr provides a large number of porosity defects while increasing the grain size, which can effectively improve the reflection of electromagnetic waves inside the material and dissipate more energy. At the same time, co-doping also makes the resonance frequency of the samples shift to lower frequency, resulting in tunable absorption properties in the C, X and Ku bands. When x = 0.2, the minimum reflection loss is −40.61 dB at 1.5 mm thickness, with the effective absorption bandwidth of 5.76 GHz in the X band; when x = 0.4, the minimum reflection loss is −37.45 dB at 2.5 mm, with the bandwidth of 4.97 GHz in the C band; when x = 0.6, the material has good absorption in both the X and Ku bands with the thickness less than 2 mm. The simple preparation method and good performance make La-Sr co-doped Co2W ferrite a promising microwave absorbing material.

Funder

National Key Research and Development Program

Key Project of the National Natural Science Foundation of China

Key Research and Development Program of Zhejiang Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3