Influence of TiN Inclusions and Segregation Bands on the Mechanical Properties and Delayed Crack in Thick NM550 Wear-Resistant Steel

Author:

Sun Haoran1,Du Hegang1,Tong Keke1,Liu Lihua2,Yan Qiangjun2,Zuo Xiurong1

Affiliation:

1. Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China

2. Nanjing Iron & Steel Co., Ltd., Nanjing 210035, China

Abstract

The formation mechanism of the delayed crack after flame cutting and mechanical properties in thick NM550 wear-resistant steel are studied by optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and an electron backscattered diffractometer. The delayed crack is formed at the segregation zone (SZ) located in the center of the 65 mm thick steel plate. The strength of the non-segregation zone (NSZ) with a martensite microstructure is slightly higher than that of SZ with a mixture microstructure of martensite plus bainite, and the plasticity of NSZ is significantly better than that of SZ. There exists a more severe segregation in the SZ, and only a slight segregation in the NSZ. The average grain sizes of the segregation bands in the NSZ and SZ are 15.72 µm and 6.76 µm, respectively. The number density of TiN larger than 5 µm in the NSZ and SZ is 0.031 and 1.156 number/mm2, respectively. Therefore, a high hardness segregation band with fine grains and a high dislocation density, along with the large number of coarse TiN inclusions within it, results in delayed cracking. For TiN inclusions close to the crack, microvoids or microcracks around the TiN are formed, and the delayed crack will propagate along the edge of the TiN or through the TiN inclusions.

Funder

Henan Provincial Science and Technology Cooperation Project in China

Key R&D and Promotion Special Project of Henan Province

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3