Effect of Different Configurations on Bubble Cutting and Process Intensification in a Micro-Structured Jet Bubble Column Using Digital Image Analysis

Author:

Chen Guanghui,Zhang Zhongcheng,Gao Fei,Li Jianlong,Dong Jipeng

Abstract

An experimental study was conducted in this work to investigate the effect of different configurations on bubble cutting and process intensification in a micro-structured jet bubble column (MSJBC). Hydrodynamic parameters, including bubble size, flow field, liquid velocity, gas holdup as well as the interfacial area, were compared and researched for a MSJBC with and without mesh. The bubble dynamics and cutting images were recorded by a non-invasive optical measurement. An advanced particle image velocimetry technique (digital image analysis) was used to investigate the influence of different configurations on the surrounding flow field and liquid velocity. When there was a single mesh and two stages of mesh compared with no mesh, the experimental results showed that the bubble size decreased by 22.7% and 29.7%, the gas holdup increased by 5.7% and 9.7%, and the interfacial area increased by more than 34.8% and 43.5%, respectively. Significant changes in the flow field distribution caused by the intrusive effect of the mesh were observed, resulting in separate liquid circulation patterns near the wire mesh, which could alleviate the liquid back-mixing. The mass transfer experiment results on the chemical absorption of CO2 into NaOH enhanced by a mass transfer process show that the reaction time to equilibrium is greatly reduced in the presence of the mesh in the column.

Funder

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3