A Comparison of In-Sample and Out-of-Sample Model Selection Approaches for Artificial Neural Network (ANN) Daily Streamflow Simulation

Author:

Mei Xiaohan,Smith Patricia K.

Abstract

Artificial Neural Networks (ANN) have been widely applied in hydrologic and water quality (H/WQ) modeling in the past three decades. Many studies have demonstrated an ANN’s capability to successfully estimate daily streamflow from meteorological data on the watershed level. One major challenge of ANN streamflow modeling is finding the optimal network structure with good generalization capability while ameliorating model overfitting. This study empirically examines two types of model selection approaches for simulating streamflow time series: the out-of-sample approach using blocked cross-validation (BlockedCV) and an in-sample approach that is based on Akaike’s information criterion (AIC) and Bayesian information criterion (BIC). A three-layer feed-forward neural network using a back-propagation algorithm is utilized to create the streamflow models in this study. The rainfall–streamflow relationship of two adjacent, small watersheds in the San Antonio region in south-central Texas are modeled on a daily time scale. The model selection results of the two approaches are compared, and some commonly used performance measures (PMs) are generated on the stand-alone testing datasets to evaluate the models selected by the two approaches. This study finds that, in general, the out-of-sample and in-sample approaches do not converge to the same model selection results, with AIC and BIC selecting simpler models than BlockedCV. The ANNs were found to have good performance in both study watersheds, with BlockedCV selected models having a Nash–Sutcliffe coefficient of efficiency (NSE) of 0.581 and 0.658, and AIC/BIC selected models having a poorer NSE of 0.574 and 0.310, for the two study watersheds. Overall, out-of-sample BlockedCV selected models with better predictive ability and is preferable to model streamflow time series.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3