Response of Soil Aggregate Composition and Stability to Secondary Succession and Plantation of a Broad-Leaved Korean Pine Forest after Clear-Cutting and Its Causes

Author:

Wang Yafei1ORCID,Chen Lixin1,Qu Meixue1,Duan Wenbiao1ORCID,Wang Zhizhen1,Tian Zhen1,Yang Wen1

Affiliation:

1. College of Forestry, Northeast Forestry University, Harbin 150040, China

Abstract

The composition and stability of soil aggregates are important characteristics for evaluating soil health. The objective of this study was to explore the effects of different restoration modes and secondary succession sequences of Korean pine on the stability of forest soil aggregates after clear cutting and their causes. The stability and composition of soil aggregates in 0–10 cm, 10–20 cm, and 20–40 cm were analyzed in four natural forests in the secondary succession sequence and a Pinus koraiensis plantation in the clear-cutting area of Liangshui National Nature Reserve, and the effects of forest community characteristics and cementing materials on these aggregates were explored. With the advancement of succession, the large soil water-stable aggregates and mechanical aggregates increased, and the stability increased. From the pioneer community to the top community, the proportion of macroaggregates in the soil mechanical aggregates in the 20–40 cm soil layer increased by 36%, while that in the water-stable aggregates in the 10–20 cm soil layer increased by 19%. Compared with plantation, the stability of soil aggregates in natural forests with a similar age was stronger. Water-stable aggregates were negatively correlated with bulk density, density, and porosity, and positively correlated with organic-matter-related cement. The volume of the dominant tree, litter yield, tree species diversity, biomass of various tree species, and litter biomass in the undecomposed layer were the key indicators affecting the stability of aggregates. In terms of restoration measures, natural restoration is better than plantations with a single tree species. In addition, succession makes forest soil aggregates more stable. The change of dominant tree species leads to changes in soil aggregate stability, and the effect of organic-related cementing material was stronger than that of iron oxide.

Funder

Fundamental Research Funds for the central Universities

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3