An Artificial Neural Network Model for the Prediction of Perioperative Blood Transfusion in Adult Spinal Deformity Surgery

Author:

De la Garza Ramos RafaelORCID,Hamad Mousa K.,Ryvlin Jessica,Krol Oscar,Passias Peter G.,Fourman Mitchell S.ORCID,Shin John H.ORCID,Yanamadala Vijay,Gelfand Yaroslav,Murthy Saikiran,Yassari Reza

Abstract

Prediction of blood transfusion after adult spinal deformity (ASD) surgery can identify at-risk patients and potentially reduce its utilization and the complications associated with it. The use of artificial neural networks (ANNs) offers the potential for high predictive capability. A total of 1173 patients who underwent surgery for ASD were identified in the 2017–2019 NSQIP databases. The data were split into 70% training and 30% testing cohorts. Eighteen patient and operative variables were used. The outcome variable was receiving RBC transfusion intraoperatively or within 72 h after surgery. The model was assessed by its sensitivity, positive predictive value, F1-score, accuracy (ACC), and area under the curve (AUROC). Average patient age was 56 years and 63% were female. Pelvic fixation was performed in 21.3% of patients and three-column osteotomies in 19.5% of cases. The transfusion rate was 50.0% (586/1173 patients). The best model showed an overall ACC of 81% and 77% on the training and testing data, respectively. On the testing data, the sensitivity was 80%, the positive predictive value 76%, and the F1-score was 78%. The AUROC was 0.84. ANNs may allow the identification of at-risk patients, potentially decrease the risk of transfusion via strategic planning, and improve resource allocation.

Publisher

MDPI AG

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3