Abstract
Prediction of blood transfusion after adult spinal deformity (ASD) surgery can identify at-risk patients and potentially reduce its utilization and the complications associated with it. The use of artificial neural networks (ANNs) offers the potential for high predictive capability. A total of 1173 patients who underwent surgery for ASD were identified in the 2017–2019 NSQIP databases. The data were split into 70% training and 30% testing cohorts. Eighteen patient and operative variables were used. The outcome variable was receiving RBC transfusion intraoperatively or within 72 h after surgery. The model was assessed by its sensitivity, positive predictive value, F1-score, accuracy (ACC), and area under the curve (AUROC). Average patient age was 56 years and 63% were female. Pelvic fixation was performed in 21.3% of patients and three-column osteotomies in 19.5% of cases. The transfusion rate was 50.0% (586/1173 patients). The best model showed an overall ACC of 81% and 77% on the training and testing data, respectively. On the testing data, the sensitivity was 80%, the positive predictive value 76%, and the F1-score was 78%. The AUROC was 0.84. ANNs may allow the identification of at-risk patients, potentially decrease the risk of transfusion via strategic planning, and improve resource allocation.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献