Machine Learning Models and Technologies for Evidence-Based Telehealth and Smart Care: A Review

Author:

Christopoulou Stella C.1ORCID

Affiliation:

1. Department of Business and Organization Administration, University of Peloponnese, 24100 Kalamata, Greece

Abstract

Background: Over the past few years, clinical studies have utilized machine learning in telehealth and smart care for disease management, self-management, and managing health issues like pulmonary diseases, heart failure, diabetes screening, and intraoperative risks. However, a systematic review of machine learning’s use in evidence-based telehealth and smart care is lacking, as evidence-based practice aims to eliminate biases and subjective opinions. Methods: The author conducted a mixed methods review to explore machine learning applications in evidence-based telehealth and smart care. A systematic search of the literature was performed during 16 June 2023–27 June 2023 in Google Scholar, PubMed, and the clinical registry platform ClinicalTrials.gov. The author included articles in the review if they were implemented by evidence-based health informatics and concerned with telehealth and smart care technologies. Results: The author identifies 18 key studies (17 clinical trials) from 175 citations found in internet databases and categorizes them using problem-specific groupings, medical/health domains, machine learning models, algorithms, and techniques. Conclusions: Machine learning combined with the application of evidence-based practices in healthcare can enhance telehealth and smart care strategies by improving quality of personalized care, early detection of health-related problems, patient quality of life, patient-physician communication, resource efficiency and cost-effectiveness. However, this requires interdisciplinary expertise and collaboration among stakeholders, including clinicians, informaticians, and policymakers. Therefore, further research using clinicall studies, systematic reviews, analyses, and meta-analyses is required to fully exploit the potential of machine learning in this area.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3