Geometric Feature Extraction for Identification and Classification of Overlapping Cells for Leukaemia

Author:

Kiu Siew MingORCID,Wang Yin Chai

Abstract

This paper describes the study of overlapping leukaemia cells based on geometric features for identification and classification. Geometric features of blood cells are proposed to identify and classify overlapping cells into groups based on different overlapping degrees and the number of overlapped cells. In the proposed method, the percentage of average accuracy for identifying overlapping cells reached 98 percent. The proposed method can segment white blood cells from the overlapping cells with an overlapping degree of 70 percent. Improved Watershed Algorithm successfully increased 36.89 percent of accuracy in WBC segmentation. It reduced 46.12 percent of the over-segmentation problem. Tests of cell counting are conducted in the two stages, which are before and after the process of identification and classification of overlapping cells. The average percentage of total cell count is 83.31 percent, the average percentage of WBC counting is 84.8 percent, and the average percentage of RBC counting is 60.55 percent. The proposed method is efficient in identifying and classifying overlapping cells for increasing the accuracy of cell counting.

Publisher

MDPI AG

Subject

Management Science and Operations Research,Mechanical Engineering,Energy Engineering and Power Technology

Reference22 articles.

1. Automated identification and classification of white blood cells (Leukocytes) in digital microscopic image;Hiremath;IJCA Spec. Issue Recent Trends Image Processing Pattern Recognit.,2010

2. New approach to red blood cell classification using morphological image processing;Taherisadr;J. Shiraz E-Med.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leukemia Cells Classification using Deep Learning Approaches;2023 25th International Multitopic Conference (INMIC);2023-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3