Gibbs Free Energy, a Thermodynamic Measure of Protein–Protein Interactions, Correlates with Neurologic Disability

Author:

Keegan Michael,Siegelmann Hava T.,Rietman Edward A.,Klement Giannoula Lakka,Tuszynski Jack A.ORCID

Abstract

Modern network science has been used to reveal new and often fundamental aspects of brain network organization in physiological as well as pathological conditions. As a consequence, these discoveries, which relate to network hierarchy, hubs and network interactions, have begun to change the paradigms of neurodegenerative disorders. In this paper, we explore the use of thermodynamics for protein–protein network interactions in Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), traumatic brain injury and epilepsy. To assess the validity of using network interactions in neurological diseases, we investigated the relationship between network thermodynamics and molecular systems biology for these neurological disorders. In order to uncover whether there was a correlation between network organization and biological outcomes, we used publicly available RNA transcription data from individual patients with these neurological conditions, and correlated these molecular profiles with their respective individual disability scores. We found a linear correlation (Pearson correlation of −0.828) between disease disability (a clinically validated measurement of a person’s functional status) and Gibbs free energy (a thermodynamic measure of protein–protein interactions). In other words, we found an inverse relationship between disease disability and thermodynamic energy. Because a larger degree of disability correlated with a larger negative drop in Gibbs free energy in a linear disability-dependent fashion, it could be presumed that the progression of neuropathology such as is seen in Alzheimer’s disease could potentially be prevented by therapeutically correcting the changes in Gibbs free energy.

Publisher

MDPI AG

Subject

Management Science and Operations Research,Mechanical Engineering,Energy Engineering and Power Technology

Reference14 articles.

1. Editor Neurological Disorders, Public Health Challengeshttps://www.who.int/publications/i/item/9789241563369

2. The road to restoring neural circuits for the treatment of Alzheimer's disease

3. Deep Brain Stimulation and Gene Expression Alterations in Parkinson’s Disease;Mohammadi;J. Biomed. Phys. Eng.,2016

4. Gene expression in the Parkinson's disease brain

5. Design principles for cancer therapy guided by changes in complexity of protein-protein interaction networks

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3