Abnormal Gait and Tremor Detection in the Elderly Ambulatory Behavior Using an IoT Smart Cane Device

Author:

Adebiyi Marion O.ORCID,Abdulrasaq SurajudeenORCID,Olugbara Oludayo

Abstract

In this paper, a novel approach for abnormal gait and tremor detection using a smart walking cane is introduced. Periodic muscle movement associated with Parkinson’s disease, such as arm shaking, vibrating arm, trembling fingers, rhythmic wrist movements, normal and abnormal walking pattern, was learned and classified with linear discriminant analysis. Although detecting symptoms related to disease with walking sticks might look trivial at first, throughout history, a cane or walking stick has been used as an assistive device to aid in ambulating, especially in the elderly and disabled, so embedding smart devices (that can learn ambulating pattern and detect anomalies associated with it) in the cane will help in early detection of diseases and facilitate early intervention. This approach is non-intrusive, and privacy issues being experienced in visual models do not arise, as users do not need to wear any special bracelet or wrist monitoring, and they only need to pick up the cane when they wish to move. The simplicity and efficient usage of a technique for detecting ambulatory anomalies is also demonstrated in this research. We extracted step counts, fall data and other valuable features from the cane, and detected anomalies by using isolation forest and one-class support vector machine (SVM) methods. Falls were detected easily and naturally with the cane, which had different alert modes (a soft alert when the cane lost equilibrium and was picked up within 15 s, and a strong alert otherwise). Intervention systems are proposed to forestall and limit the possibility of a type 2 error.

Publisher

MDPI AG

Subject

Management Science and Operations Research,Mechanical Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of Insider Threats Using Deep Learning;2023 3rd International Conference on Pervasive Computing and Social Networking (ICPCSN);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3