Sequence Motif Analysis of PRDM9 and Short Inverted Repeats Suggests Their Contribution to Human Microdeletion and Microduplication Syndromes

Author:

Ladias Paris1ORCID,Markopoulos Georgios S.2ORCID,Kostoulas Charilaos1ORCID,Bouba Ioanna1,Georgiou Agis1,Markoula Sofia3,Georgiou Ioannis1

Affiliation:

1. Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 110 Ioannina, Greece

2. Neurosurgical Institute, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 110 Ioannina, Greece

3. Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 110 Ioannina, Greece

Abstract

Holliday junctions are the first recognized templates of legitimate recombination. Their prime physiological role is meiotic homologous recombination, resulting in rearrangements of the genetic material. In humans, recombination hotspots follow a distinct epigenetic pattern designated by the presence of PR domain-containing protein 9 (PRDM9). Repetitive DNA elements can replicate in the genome and can pair with short inverted repeats (SIRs) that form Holliday junctions in a significantly high frequency in vitro. Remarkably, PRDM9 and SIR sequence motifs, which may have the potential to act as recombination primers associated with transposable elements (TEs) and their presence, may lead to gradual spreading of recombination events in human genomes. Microdeletion and microduplication syndromes (MMSs) constitute a significant entity of genetic abnormalities, almost equal in frequency to aneuploidies. Based on our custom database, which includes all MMSs shorter than 5 Mbs in length which is the cut-off point for the standard cytogenetic resolution, we found that the majority of MMSs were present in sequences shorter than 0.5 Mbs. A high probability of TE-associated and non-TE-associated PRDM9/SIR sequence motifs was found in short and long MMSs. Significantly, following the Reactome pathway analysis, a number of affected genes have been associated with the pathophysiological pathways linked to MMSs. In conclusion, PRDM9 or SIR sequence motifs in regions spanning MMSs hotspots underlie a potential functional mechanism for MMS occurrences during recombination.

Funder

European Regional Development Fund of the European Union and Greek national funds

Publisher

MDPI AG

Subject

Management Science and Operations Research,Mechanical Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3