Automated Detection of Ear Tragus and C7 Spinous Process in a Single RGB Image—A Novel Effective Approach

Author:

Kramer IvannaORCID,Bauer SabineORCID,Matejcek Anne

Abstract

Biophotogrammetric methods for postural analysis have shown effectiveness in the clinical practice because they do not expose individuals to radiation. Furthermore, valid statements can be made about postural weaknesses. Usually, such measurements are collected via markers attached to the subject’s body, which can provide conclusions about the current posture. The craniovertebral angle (CVA) is one of the recognized measurements used for the analysis of human head–neck postures. This study presents a novel method to automate the detection of the landmarks that are required to determine the CVA in RGBs. Different image processing methods are applied together with a neuronal network Openpose to find significant landmarks in a photograph. A prominent key body point is the spinous process of the cervical vertebra C7, which is often visible on the skin. Another visual landmark needed for the calculation of the CVA is the ear tragus. The methods proposed for the automated detection of the C7 spinous process and ear tragus are described and evaluated using a custom dataset. The results indicate the reliability of the proposed detection approach, particularly head postures.

Publisher

MDPI AG

Subject

Management Science and Operations Research,Mechanical Engineering,Energy Engineering and Power Technology

Reference35 articles.

1. Providing Information through Smart Platforms: An Applied Study on Academic Libraries in Saudi Universities

2. Ericsson Mobility Report. Report, Ericsson https://www.ericsson.com/en/reports-and-papers/mobility-report/reports/november-2021

3. Number of Smartphone Users from 2016 to 2021. Website https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

4. Gravitational demand on the neck musculature during tablet computer use

5. Computer-related posture and musculoskeletal discomfort in middle school students

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3