Identifying the Role of Disulfidptosis in Endometrial Cancer via Machine Learning Methods

Author:

Fu Fei123,Lu Xuesong123,Zhang Zhushanying123ORCID,Li Zhi123,Xie Qinlan123ORCID

Affiliation:

1. College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China

2. Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China

3. Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, Wuhan 430074, China

Abstract

Uterine corpus endometrial carcinoma (UCEC) is the second most common gynecological cancer in the world. With the increased occurrence of UCEC and the stagnation of research in the field, there is a pressing need to identify novel UCEC biomarkers. Disulfidptosis is a novel form of cell death, but its role in UCEC is unclear. We integrate differential analysis and the XGBoost algorithm to determine a disulfidptosis-related characteristic gene (DRCG), namely LRPPRC. By prediction and verification based on online databases, we construct a regulatory network of ceRNA in line with the scientific hypothesis, including a ceRNA regulatory axis and two mRNA-miRNA regulatory axes, i.e., mRNA LRPPRC/miRNA hsa-miR-616-5p/lncRNA TSPEAR-AS2, mRNA LRPPRC/miRNA hsa-miR-4658, and mRNA LRPPRC/miRNA hsa-miR-6783-5p. We use machine learning methods such as GBM to screen out seven disulfidptosis-related characteristic lncRNAs (DRCLs) as predictors, and build a risk prediction model with good prediction ability. SCORE = (1.136*LINC02449) + (−2.173*KIF9-AS1) + (−0.235*ACBD3-AS1) + (1.830*AL354892.3) + (−1.314*AC093677.2) + (0.636*AC113361.1) + (−0.589*CDC37L1-DT). The ROC curve shows that in the training set samples, the AUCs for predicting 1-, 3-, 6-, and 10-year OS are 0.804, 0.724, 0.719, and 0.846, respectively. In the test set samples, the AUCs for predicting 1-, 3-, 6-, and 10-year OS are 0.615, 0.657, 0.687, and 0.702, respectively. In all samples, the AUCs for predicting 1-, 3-, 6-, and 10-year OS are 0.752, 0.706, 0.705, and 0.834, respectively. CP724714 has been screened as a potential therapy option for individuals who have a high risk of developing UCEC. Two subtypes of disulfidptosis-related genes (DRGs) and two subtypes of DRCLs are obtained by NMF method. We find that subtype N1 of DRGs is mainly enriched in various metabolic pathways, and subtype N1 may play a significant role in the process of disulfidptosis. Our study confirms for the first time that disulfidptosis plays a role in UCEC. Our findings help improve the prognosis and treatment of UCEC.

Funder

Key Research and Development Program of Hubei Province

Fundamental Research Funds for the Central Universities, South-Central Minzu University

Laboratory Research Project, South-Central Minzu University

Teaching Reform Research Project, South-Central Minzu University

Curriculum Reform Topic Research Project, South-Central Minzu University

Publisher

MDPI AG

Subject

Management Science and Operations Research,Mechanical Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3