Watershed Characterization and Hydrograph Recession Analysis: A Comparative Look at a Karst vs. Non-Karst Watershed and Implications for Groundwater Resources in Gaolan River Basin, Southern China

Author:

Jakada Hamza,Chen Zhihua,Luo MingmingORCID,Zhou Hong,Wang Zejun,Habib Mukhtar

Abstract

Karst watersheds are often treated as non-karst watersheds that can lead to several hazards. Hence, how do karst watersheds differ from non-karst watersheds and what are the effects of karstification on groundwater availability and quality? In this study, we contrast between a karst and non-karst watershed by elucidating their geomorphological peculiarities and potential impact on spatio-temporal availability and quality of groundwater. GIS morphometric mapping and hydrograph recession analysis are applied to map the watershed features and estimate hydrograph recession coefficient to define the groundwater drainage characteristics as well as the influence of karst drainage attributes (KDA). Furthermore, we characterize streamflow components based on the hydrograph recession limbs (segments) and infer their contributing geomorphological factors. Results show that the karst watershed has higher recession coefficients for successive recession limbs. Consequently, it drains larger volumes of groundwater primarily due to the KDAs, which transmit interflow and groundwater flow more rapidly through large cavities to springs as well as stream channels. The KDAs generate what we term karst drainage flow (KDF), defined by the second recession limb which has high recession coefficient as the first limb (overland flow) and strongly contrasts with the non-karst watershed from visual and ANOVA analysis. The effect is that karst aquifer yield over time is significantly lower and highly exposed to pollution compared to the non-karst aquifer. Consequently, sustainable water management practices should be adopted to ensure the availability and safety of groundwater reserves.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3