Nonstationary Analysis for Bivariate Distribution of Flood Variables in the Ganjiang River Using Time-Varying Copula

Author:

Wen Tianfu,Jiang CongORCID,Xu Xinfa

Abstract

Nonstationarity of univariate flood series has been widely studied, while nonstationarity of some multivariate flood series, such as discharge, water stage, and suspended sediment concentrations, has been studied rarely. This paper presents a procedure for using the time-varying copula model to describe the nonstationary dependence structures of two correlated flood variables from the same flood event. In this study, we focus on multivariate flood event consisting of peak discharge (Q), peak water stage (Z) and suspended sediment load (S) during the period of 1964–2013 observed at the Waizhou station in the Ganjiang River, China. The time-varying copula model is employed to analyze bivariate distributions of two flood pairs of (Z-Q) and (Z-S). The main channel elevation (MCE) and the forest coverage rate (FCR) of the basin are introduced as the candidate explanatory variables for modelling the nonstationarities of both marginal distributions and dependence structure of copula. It is found that the marginal distributions for both Z and S are nonstationary, whereas the marginal distribution for Q is stationary. In particular, the mean of Z is related to MCE, and the mean and variance of S are related to FCR. Then, time-varying Frank copula with MCE as the covariate has the best performance in fitting the dependence structures of both Z-Q and Z-S. It is indicated that the dependence relationships are strengthen over time associated with the riverbed down-cutting. Finally, the joint and conditional probabilities of both Z-Q and Z-S obtained from the best fitted bivariate copula indicate that there are obvious nonstationarity of their bivariate distributions. This work is helpful to understand how human activities affect the bivariate flood distribution, and therefore provides supporting information for hydraulic structure designs under the changing environments.

Funder

Water Resources Science and Technology Project of Jiangxi, China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3