Enhanced Linear and Vision Transformer-Based Architectures for Time Series Forecasting

Author:

Alharthi Musleh1,Mahmood Ausif1

Affiliation:

1. Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA

Abstract

Time series forecasting has been a challenging area in the field of Artificial Intelligence. Various approaches such as linear neural networks, recurrent linear neural networks, Convolutional Neural Networks, and recently transformers have been attempted for the time series forecasting domain. Although transformer-based architectures have been outstanding in the Natural Language Processing domain, especially in autoregressive language modeling, the initial attempts to use transformers in the time series arena have met mixed success. A recent important work indicating simple linear networks outperform transformer-based designs. We investigate this paradox in detail comparing the linear neural network- and transformer-based designs, providing insights into why a certain approach may be better for a particular type of problem. We also improve upon the recently proposed simple linear neural network-based architecture by using dual pipelines with batch normalization and reversible instance normalization. Our enhanced architecture outperforms all existing architectures for time series forecasting on a majority of the popular benchmarks.

Publisher

MDPI AG

Reference25 articles.

1. Box, G.E., Jenkins, G.M., Reinsel, G.C., and Ljung, G.M. (2015). Time Series Analysis: Forecasting and Control, John Wiley & Sons.

2. Forecasting time series with complex seasonal patterns using exponential smoothing;Hyndman;J. Am. Stat. Assoc.,2011

3. Cerqueira, V., Torgo, L., and Soares, C. (2019). Machine Learning vs. Statistical Methods for Time Series Forecasting: Size Matters. arXiv.

4. Time-series forecasting with deep learning: A survey;Lim;Philos. Trans. R. Soc. A,2021

5. DeepAR: Probabilistic forecasting with autoregressive recurrent networks;Salinas;Int. J. Forecast.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3