Abstract
Space-time adaptive processing (STAP) is a well-known technique for slow-moving target detection in the clutter spreading environment. For an airborne conformal array radar, conventional STAP methods are unable to provide good performance in suppressing clutter because of the geometry-induced range-dependent clutter, non-uniform spatial steering vector, and polarization sensitivity. In this paper, a knowledge aided STAP method based on sparse learning via iterative minimization (SLIM) combined with Laplace distribution is proposed to improve the STAP performance for a conformal array. The proposed method can avoid selecting the user parameter. the proposed method constructs a dictionary matrix that is composed of the space-time steering vector by using the prior knowledge of the range cell under test (CUT) distributed in clutter ridge. Then, the estimated sparse parameters and noise power can be used to calculate a relatively accurate clutter plus noise covariance matrix (CNCM). This method could achieve superior performance of clutter suppression for a conformal array. Simulation results demonstrate the effectiveness of this method.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference35 articles.
1. Adaptive ground clutter suppression for conformal array radar systems
2. Space-Time Adaptive PROCESSING for airborne Radar;Ward,1994
3. Principles of Space-Time Adaptive Processing;Klemm,2002
4. Robust training samples selection algorithm based on spectral similarity for space-time adaptive processing in heterogeneous interference environments;Wu;IET Radar Sonar Navig.,2015
5. The Applications of Space-Time Adaptive Processing;Klemm,2004
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献