Deep Learning-Based Feature Extraction of Acoustic Emission Signals for Monitoring Wear of Grinding Wheels

Author:

González D.,Alvarez J.ORCID,Sánchez J. A.ORCID,Godino L.ORCID,Pombo I.

Abstract

Tool wear monitoring is a critical issue in advanced manufacturing systems. In the search for sensing devices that can provide information about the grinding process, Acoustic Emission (AE) appears to be a promising technology. The present paper presents a novel deep learning-based proposal for grinding wheel wear status monitoring using an AE sensor. The most relevant finding is the possibility of efficient feature extraction form frequency plots using CNNs. Feature extraction from FFT plots requires sound domain-expert knowledge, and thus we present a new approach to automated feature extraction using a pre-trained CNN. Using the features extracted for different industrial grinding conditions, t-SNE and PCA clustering algorithms were tested for wheel wear state identification. Results are compared for different industrial grinding conditions. The initial state of the wheel, resulting from the dressing operation, is clearly identified for all the experiments carried out. This is a very important finding, since dressing strongly affects operation performance. When grinding parameters produce acute wear of the wheel, the algorithms show very good clustering performance using the features extracted by the CNN. Performance of both t-SNE and PCA was very much the same, thus confirming the excellent efficiency of the pre-trained CNN for automated feature extraction from FFT plots.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3