Video-Based Person Re-Identification by an End-To-End Learning Architecture with Hybrid Deep Appearance-Temporal Feature

Author:

Sun RuiORCID,Huang Qiheng,Xia Miaomiao,Zhang Jun

Abstract

Video-based person re-identification is an important task with the challenges of lighting variation, low-resolution images, background clutter, occlusion, and human appearance similarity in the multi-camera visual sensor networks. In this paper, we propose a video-based person re-identification method called the end-to-end learning architecture with hybrid deep appearance-temporal feature. It can learn the appearance features of pivotal frames, the temporal features, and the independent distance metric of different features. This architecture consists of two-stream deep feature structure and two Siamese networks. For the first-stream structure, we propose the Two-branch Appearance Feature (TAF) sub-structure to obtain the appearance information of persons, and used one of the two Siamese networks to learn the similarity of appearance features of a pairwise person. To utilize the temporal information, we designed the second-stream structure that consisting of the Optical flow Temporal Feature (OTF) sub-structure and another Siamese network, to learn the person’s temporal features and the distances of pairwise features. In addition, we select the pivotal frames of video as inputs to the Inception-V3 network on the Two-branch Appearance Feature sub-structure, and employ the salience-learning fusion layer to fuse the learned global and local appearance features. Extensive experimental results on the PRID2011, iLIDS-VID, and Motion Analysis and Re-identification Set (MARS) datasets showed that the respective proposed architectures reached 79%, 59% and 72% at Rank-1 and had advantages over state-of-the-art algorithms. Meanwhile, it also improved the feature representation ability of persons.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3