Boussinesq Simulation of Coastal Wave Interaction with Bottom-Mounted Porous Structures

Author:

Fang Kezhao,Huang Minghan,Chen Guanglin,Wu Jinkong,Wu Hao,Jiang Tiantian

Abstract

A Boussinesq-type wave model is developed in this paper to simulate the interaction of coastal waves with bottom-mounted porous structures. The governing equations are rewritten in the conservative form to facilitate the use of hybrid finite volume (FV) and finite difference (FD) method. Higher-order slope terms are also inserted into the equations to account for rapidly varying bathymetry. The convective flux is approximated using the FV method, while the remaining terms are discretized using the FD method in a uniform rectangle grid system. The time integration is implemented using the third order Runge–Kutta method with an adaptive time step. A single GPU parallel computation is also implemented to save computation costs. The numerical model is validated against a series of experimental datasets, including data acquired in a new laboratory experiment. The predictions are in overall agreement with the measurements, proving that the model is capable of handling wave interaction with porous structures in the coastal region for a wide range of scenarios.

Funder

National Natural Science Foundation of China

National Key Laboratory of Environmental Protection and Marine Ecological Environment Restoration

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3