An Optimal BP Neural Network Track Prediction Method Based on a GA–ACO Hybrid Algorithm

Author:

Zheng Yuanzhou,Lv Xuemeng,Qian Long,Liu Xinyu

Abstract

Ship position prediction is the key to inland river and sea navigation warning. Maritime traffic control centers, according to ship position monitoring, ship position prediction and early warning, can effectively avoid collisions. However, the prediction accuracy and computational efficiency of the ship’s future position are the key problems to be solved. In this paper, a path prediction model (GA–ACO–BP) combining a genetic algorithm, an ant colony algorithm and a BP neural network is proposed. The model is first used to perform deep pretreatment of raw AIS data, with the main body of the BP neural network as a prediction model, focused on the complementarity between genetic and ant colony algorithms, to determine the ant colony initialization pheromone concentration by the genetic algorithm, design the hybrid genetic–ant colony algorithm, and optimize this to the optimal weight and threshold of the BP neural network, in order to improve the convergence speed and effect of the traditional BP neural network. The test results show that the model greatly improves the fitness of track prediction, with higher accuracy and within a shorter time, and has a certain real-time and extensibility for track prediction of different river segments.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3