Improving Computational Efficiency in WEC Design: Spectral-Domain Modelling in Techno-Economic Optimization

Author:

Bonfanti MauroORCID,Giorgi GiuseppeORCID

Abstract

Wave energy converter (WEC) optimization often underlines incremental and iterative approaches that result in suboptimal solutions, since all the elements that concur with a techno-economical evaluation are optimized separately due to computation constraints. A design process should rely on precise WEC models to ensure high result accuracy while minimizing the computational demand. These conflicting objectives can be addressed with non-linear time-domain models, known to be numerically accurate, and frequency-domain models due to their high computational efficiency. This work pursues the development of an all-encompassing optimization tool for a gyroscopic-type WEC called ISWEC that applies a new modelling technique named spectral-domain technique as a substitution to the complex time-domain model previously employed. In particular, the spectral-domain technique provides accurate and fast performance predictions of the ISWEC system and offers the possibility to model a hydraulic power take-off, not representable in the frequency domain. The article illustrates techno-economic trends associated with an early-stage design of the ISWEC in high-energy sea-sites, where the low-speed and high-torque profiles call for the use of hydraulic transmissions as opposed to the old electro-mechanical transmissions. The design tool proposed could facilitate the development of WEC technologies via efficient and accurate power assessment and via the possibility of carrying out advanced techno-economic optimisation that goes beyond linear models.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference84 articles.

1. Power conversion mechanisms for wave energy

2. Ocean Wave Energy

3. The Wave Energy Converter Design Process: Methods Applied in Industry and Shortcomings of Current Practices

4. Techno-Economic Optimisation for a Wave Energy Converter via Genetic Algorithm

5. Multiobjective optimisation approaches applied to a wave energy converter design;Carapellese;Proceedings of the European Wave and Tidal Energy Conference, European Wave and Tidal Energy Conference Series,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3