Abstract
In this paper, a 2-stage cascaded deep learning framework, Port Wave Prediction Network (PWPNet), is proposed for real-time prediction of significant wave height (SWH) distribution in a port. The PWP-out model of the first stage, predicting port-entrance wave parameters, utilizes three branches, the first branch using a Long Short Term Memory (LSTM) module to learn the temporal dependencies of time sequences of port-entrance wave parameters, the second branch using Wave and Wind field Feature Extraction (WWFE) modules, composed of a residual network with spatial and channel attention, to capture spatiotemporal characteristics of outside-port 2D wave and wind field data, the third branch using multi-scale time encoding to capture the periodic characteristics of waves and wind. The PWP-in model of the second stage, estimating the in-port SWH distribution, uses port-entrance wave parameters based on a customized Artificial Neural Network (ANN) and takes PWP-out’s output as its input. A comparison of the performance of PWP-out and mainstream machine learning models including LSTM, GRU, BPNN, SVR, ELM, and RF at Hambantota Port shows that PWP-out outperforms all other models regarding medium-term (25–48 h), med–long-term (49–72 h), and long-term (73–96 h) predictions, and ablation experiments proved the effectiveness of the three branches. Furthermore, the performance comparison of our PWPNet and other 2-stage models of LSTM, GRU, BPNN, SVR, ELM, and RF cascaded with PWP-in shows that PWPNet outperforms those cascaded models for medium-term to long-term predictions of SWH distribution in a port.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献