Sensitivity Analysis of Event-Specific Calibration Data and Its Application to Modeling of Subaerial Storm Erosion under Complex Bathymetry

Author:

Jin HyeokORCID,Do KideokORCID,Kim Inho,Chang Sungyeol

Abstract

Key parameters in a process-based model depicting the morphological changes during storm events should be adjusted to simulate the hydro- and morphodynamics, leading to site-, profile-, and event-specific calibration. Although area models eliminate variability in calibrated parameters along with each profile in complex bathymetry, the amount of influence datasets with different wave conditions have on model performance is still unclear in an area model in a given parameter space. This study collected hydrodynamic and bathymetric field data over four different storm conditions (two single and two cluster storms) at Maengbang Beach, South Korea. The numerical model XBeach was adopted using four storm datasets with four key parameters to examine the influence of event-specific calibration data on subaerial storm erosion. When using clustered storm data, a relatively limited number of parameter combinations showed higher model sensitivity to different parameter sets as opposed to single storm data with the same parameter sets. Model sensitivity to different storm events was correlated with cumulative storm power and resultant erosion volume in comparison with other features in the datasets. The results are expected to guide the selection of an event-specific dataset with various morphological and hydrodynamic factors in an area model under complex bathymetry.

Funder

National Research Foundation of Korea

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating Vegetation Effects on Wave Attenuation and Dune Erosion during Hurricane;Journal of Marine Science and Engineering;2024-08-06

2. Morphological Changes in Storm Hinnamnor and the Numerical Modeling of Overwash;Journal of Marine Science and Engineering;2024-01-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3