Abstract
In this paper, we focus on the performance analysis of device-to-device (D2D) underlay communication in cellular networks. First, we develop a spatiotemporal traffic model to model a retransmission mechanism for D2D underlay communication. The D2D users in backlogged statuses are modeled as a thinned Poisson point process (PPP). To capture the characteristics of sporadic wireless data generation and limited buffer, we adopt queuing theory to analyze the performance of dynamic traffic. Furthermore, a feedback queuing model is adopted to analyze the performance with retransmission strategy. With the consideration of interference and channel fading, the service probability of the queue departure process is determined by the received signal-to-interference-plus-noise ratio (SINR). Then, the embedded Markov chain is employed to depict the queuing status in the D2D user buffer. We compute its steady-state distribution and derive the closed-form expressions of performance metrics, namely the average queue length, average throughput, average delay, and dropping probability. Simulation results show the validity and rationality of the theoretical analysis with different channel parameters and D2D densities. In addition, the simulation explores the dropping probability of a D2D user with and without the retransmission strategy for different D2D links in the system. When the arrival rate is comparatively high, the optimal throughput is reached after fewer retransmission attempts as a result of the limited buffer.
Funder
Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献