Abstract
Dynamic and static reactive power resources have become an important means of maintaining the stability and reliability of power system networks. For example, if reactive power is not appropriately compensated for in transmission and distribution systems, the receiving end voltage may fall dramatically, or the load voltage may increase to a level that trips protection devices. However, none of the previous optimal power-flow studies for reactive power generation (RPG) units have optimized the location and capacity of RPG units by the bus impedance matrix power-flow calculation method. Thus, this study proposes a genetic algorithm that optimizes the location and capacity of RPG units, which is implemented by MATLAB. In addition, this study enhances the algorithm by incorporating bus impedance power-flow calculation method into the algorithm. The proposed hybrid algorithm is shown to be valid when applied to well-known IEEE test systems.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献