Environmental Attention-Guided Branchy Neural Network for Speech Enhancement

Author:

Zhang Lu,Wang Mingjiang,Zhang Qiquan,Liu Ming

Abstract

The performance of speech enhancement algorithms can be further improved by considering the application scenarios of speech products. In this paper, we propose an attention-based branchy neural network framework by incorporating the prior environmental information for noise reduction. In the whole denoising framework, first, an environment classification network is trained to distinguish the noise type of each noisy speech frame. Guided by this classification network, the denoising network gradually learns respective noise reduction abilities in different branches. Unlike most deep neural network (DNN)-based methods, which learn speech reconstruction capabilities with a common neural structure from all training noises, the proposed branchy model obtains greater performance benefits from the specially trained branches of prior known noise interference types. Experimental results show that the proposed branchy DNN model not only preserved better enhanced speech quality and intelligibility in seen noisy environments, but also obtained good generalization in unseen noisy environments.

Funder

Shenzhen Technical Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3