Author:
Zhang Lu,Wang Mingjiang,Zhang Qiquan,Liu Ming
Abstract
The performance of speech enhancement algorithms can be further improved by considering the application scenarios of speech products. In this paper, we propose an attention-based branchy neural network framework by incorporating the prior environmental information for noise reduction. In the whole denoising framework, first, an environment classification network is trained to distinguish the noise type of each noisy speech frame. Guided by this classification network, the denoising network gradually learns respective noise reduction abilities in different branches. Unlike most deep neural network (DNN)-based methods, which learn speech reconstruction capabilities with a common neural structure from all training noises, the proposed branchy model obtains greater performance benefits from the specially trained branches of prior known noise interference types. Experimental results show that the proposed branchy DNN model not only preserved better enhanced speech quality and intelligibility in seen noisy environments, but also obtained good generalization in unseen noisy environments.
Funder
Shenzhen Technical Project
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献