The Effect of Light Intensity on Vegetative Propagation Efficacy, Growth, and Morphology of “Albion” Strawberry Plants in a Precision Indoor Propagation System

Author:

Xu Xiangnan,Hernández Ricardo

Abstract

Open-field strawberry propagation is faced with several challenges such as lack of daughter plants, low quality, and disease transmission. Propagating strawberry plants in a completely enclosed controlled environment using a precision indoor propagation (PIP) system could overcome some of the challenges seen in open-field strawberry propagation. Optimizing the light intensity in a PIP system improves plant growth and reduce propagation cost. In the present study, “Albion” strawberry plants were grown as stock plants in a PIP system to examine plant propagation efficacy under three light intensities, PPF-250 (241 ± 13), PPF-350 (337 ± 13), or PPF-450 (443 ± 17) photosynthetic photon flux density (PPFD, μmol m−2 s−1) at 12 h photoperiod. They were grown under 25.7 ± 0.05 °C temperature, 0.95 ± 0.04 kPa vapor pressure deficit, and 73% ± 5.2% relative humidity. The number of daughter plants, morphology, and growth were recorded weekly (non-destructive measurements) for two intervals (01 to 12 weeks and 12 to 21 weeks). The number, total dry mass, and total fresh mass of daughter plants per stock plant increased with the increase in light intensity. The propagation efficacy to light ranged between 0.3 and 1.9 daughter plants per mole of light, depending on light intensity and harvest time. The number of daughter plants per week was estimated to be 36.2 plants wk−1 m−2. Daughter plants were classified by size and size was not influenced by the light treatment. Stock plant crown diameter, leaf area, fresh mass, dry mass, and leaf count all increased with an increase in PPFD. The shoot dry mass percent distribution to the daughter plant was 45% to 46% and was not affected by light intensity treatment. This study demonstrates the feasibility of using PIP systems for the production of strawberry daughter plants.

Funder

U.S. Department of Agriculture

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference46 articles.

1. Strawberrieshttps://www.agmrc.org/commodities-products/fruits/strawberries

2. Sample Costs to Produce and Harvest Strawberries;Bolda,2016

3. Latent entry and spread ofColletotrichum acutatum(species complex) in strawberry fields

4. Flowering responses of North American strawberry cultivars

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3