Impact of a Hybrid Assisted Wheelchair Propulsion System on Motion Kinematics during Climbing up a Slope

Author:

Wieczorek BartoszORCID,Warguła ŁukaszORCID,Rybarczyk Dominik

Abstract

Overcoming terrain obstacles presents a major problem for people with disabilities or with limited mobility who are dependent on wheelchairs. An engineering solution designed to facilitate the use of wheelchairs are assisted-propulsion systems. The objective of the research described in this article is to analyze the impact of the hybrid manual–electric wheelchair propulsion system on the kinematics of the anthropotechnical system when climbing hills. The tests were carried out on a wheelchair ramp with an incline of 4°, using a prototype wheelchair with a hybrid manual–electric propulsion system in accordance with the patent application P.427855. The test subjects were three people whose task was to propel the wheelchair in two assistance modes supporting manual propulsion. The first mode is hill-climbing assistance, while the second one is assistance with propulsion torque in the propulsive phase. During the tests, several kinematic parameters of the wheelchair were monitored. An in-depth analysis was performed for the amplitude of speed during a hill climb and the number of propulsive cycles performed on a hill. The tests performed showed that when propelling the wheelchair only using the hand rims, the subject needed an average of 13 ± 1 pushes on the uphill slope, and their speed amplitude was 1.8 km/h with an average speed of 1.73 km/h. The climbing assistance mode reduced the speed amplitude to 0.76 km/h. The torque-assisted mode in the propulsive phase reduced the number of cycles required to climb the hill from 13 to 6, while in the climbing assistance mode the number of cycles required to climb the hill was reduced from 12 to 10 cycles. The tests were carried out at various values of assistance and assistance amplification coefficient, and the most optimally selected parameters of this coefficient are presented in the results. The tests proved that electric propulsion assistance has a beneficial and significant impact on the kinematics of manual wheelchair propulsion when compared to a classic manual propulsion system when overcoming hills. In addition, assistance and assistance amplification coefficient were proved to be correlated with operating conditions and the user’s individual characteristics.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3