Abstract
Ecological restoration and climate change in the Loess Plateau region have become research hotspots. Climate change and anthropogenic activities have led to spatial–temporal pattern variations in vegetation and extreme climatic indices and meteorological factors. Therefore, obtaining a better understanding is necessary of the internal relations between vegetation and meteorological factors. In this paper, the interplay between vegetation index and various factors, including extreme climatic indices and meteorological factors, during a long-term time series is investigated using Mann–Kendall trend analysis, and Pearson correlation coefficient analysis. The mechanisms of interaction between vegetation growth and various factors in the Loess Plateau are then analyzed. Results reveal that (i) the rapid growth of vegetation during 2000–2015 has made a major contribution to the growth trend of the Loess Plateau in the past 33 years (1982–2015). During 2000–2015, the increase of vegetation may inhibit the increase of extreme warm index and the decrease of extreme cold index; (ii) a warm and dry climate developed with decreasing relative humidity and increasing temperature; (iii) the normalized vegetation index (NDVI) is strongly correlated with extreme climatic indices and meteorological factors, especially precipitable water vapor (PWV), with a correlation coefficient of 0.94; and (iv) the daily temperature range, diurnal temperature range and sunshine duration (SSD) exerted different time-delay effects on vegetation growth in the Loess Plateau. The above findings provide an essential theoretical basis for ecological policy formulation in the Loess Plateau.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献