Influence of Vacuum Level on Heat Transfer Characteristics of Maglev Levitation Electromagnet Module

Author:

Mao Yiqian,Yang Mingzhi,Wang Tiantian,Wu Fan,Qian BosenORCID

Abstract

The vacuum tube transportation (VTT) system has been a promising direction of future transportation. Within this system, a high-speed maglev travels in a low-vacuum environment to reduce aerodynamic drag. However, the heat dissipation of on-board heating devices will be compromised under low-vacuum conditions, and the device performance may thus be lowered. This study investigates the low-vacuum conjugate heat transfer characteristic of a levitation electromagnet module of a maglev using an experimentally verified numerical method. During the heating process, the surface temperature distribution of the levitation electromagnet, and the temperature and velocity characteristics of the flow field are examined. It is found that, as the vacuum level increases from 1.0 atm to 0.1 atm, the total heat dissipating from the levitation electromagnet module is decreased by 49% at 60 min, the contribution of convection heat flux over the total heat flux is decreased from 49% to 17%, and the convection heat transfer coefficient of the levitation electromagnet is decreased by 89%. This study can provide an efficient numerical model for low-vacuum heat transfer study on a VTT system as well as help the evaluation and optimization of low-vacuum maglev thermal management systems.

Funder

Chinese Academy of Engineering

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3