Comparing Class-Aware and Pairwise Loss Functions for Deep Metric Learning in Wildlife Re-Identification

Author:

Dlamini NkosikhonaORCID,van Zyl Terence L.ORCID

Abstract

Similarity learning using deep convolutional neural networks has been applied extensively in solving computer vision problems. This attraction is supported by its success in one-shot and zero-shot classification applications. The advances in similarity learning are essential for smaller datasets or datasets in which few class labels exist per class such as wildlife re-identification. Improving the performance of similarity learning models comes with developing new sampling techniques and designing loss functions better suited to training similarity in neural networks. However, the impact of these advances is tested on larger datasets, with limited attention given to smaller imbalanced datasets such as those found in unique wildlife re-identification. To this end, we test the advances in loss functions for similarity learning on several animal re-identification tasks. We add two new public datasets, Nyala and Lions, to the challenge of animal re-identification. Our results are state of the art on all public datasets tested except Pandas. The achieved Top-1 Recall is 94.8% on the Zebra dataset, 72.3% on the Nyala dataset, 79.7% on the Chimps dataset and, on the Tiger dataset, it is 88.9%. For the Lion dataset, we set a new benchmark at 94.8%. We find that the best performing loss function across all datasets is generally the triplet loss; however, there is only a marginal improvement compared to the performance achieved by Proxy-NCA models. We demonstrate that no single neural network architecture combined with a loss function is best suited for all datasets, although VGG-11 may be the most robust first choice. Our results highlight the need for broader experimentation and exploration of loss functions and neural network architecture for the more challenging task, over classical benchmarks, of wildlife re-identification.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3